MATH 211 Calculus II Integral Calculus

Module 1 Integration Topic 1: Antiderivatives

Pangyen (Ben) Weng, Ph.D. Metropolitan State University St. Paul, MN

Antiderivatives

A function F is an **antiderivative** of f on an interval I if F'(x) = f(x)

for all x in I.

Antiderivatives

A function F is an **antiderivative** of f on an interval I if F'(x) = f(x)for all x in I.

Example. Find an antiderivative for each of the following. (a) 2x (b) $\cos x$ (c) $\frac{1}{x} + 2e^{2x}$

Example. Find an antiderivative for each of the following. (a) 2x (b) $\cos x$ (c) $\frac{1}{x} + 2e^{2x}$

Antiderivatives in General

THEOREM 8 If *F* is an antiderivative of *f* on an interval *I*, then the most general antiderivative of *f* on *I* is

F(x) + C

where *C* is an arbitrary constant.

Antiderivatives in General

THEOREM 8 If *F* is an antiderivative of *f* on an interval *I*, then the most general antiderivative of *f* on *I* is

F(x) + C

where *C* is an arbitrary constant.

Example. Find the antiderivative of $f(x) = 3x^2$ that satisfies F(1) = -1.

Example. Find the antiderivative of $f(x) = 3x^2$ that satisfies F(1) = -1.

Commonly Used Antiderivatives

TABLE 4.2 Antiderivative formulas, k a nonzero constant								
	Function	General antiderivative		Function	General antiderivative			
1.	x^n	$\frac{1}{n+1}x^{n+1} + C, n \neq -1$	8.	e^{kx}	$\frac{1}{k}e^{kx} + C$			
2.	sin <i>kx</i>	$-\frac{1}{k}\cos kx + C$	9.	$\frac{1}{x}$	$\ln x + C, x \neq 0$			
3.	$\cos kx$	$\frac{1}{k}\sin kx + C$	10.	$\frac{1}{\sqrt{1-k^2x^2}}$	$\frac{1}{k}\sin^{-1}kx + C$			
4.	$\sec^2 kx$	$\frac{1}{k} \tan kx + C$	11.	$\frac{1}{1+k^2x^2}$	$\frac{1}{k}\tan^{-1}kx + C$			
5.	$\csc^2 kx$	$-\frac{1}{k}\cot kx + C$	12.	$\frac{1}{r\sqrt{k^2r^2-1}}$	$\sec^{-1} kx + C, \ kx > 1$			
6.	sec kx tan kx	$\frac{1}{k}\sec kx + C$	12	kr I	$\begin{pmatrix} 1 \end{pmatrix} kr + C \rightarrow 0 \rightarrow 1$			
7.	csc kx cot kx	$-\frac{1}{k}\csc kx + C$	13.	a	$\left(\frac{k\ln a}{k\ln a}\right)a^{nn} + C, \ a > 0, \ a \neq 1$			

Linearity Rules

TABLE 4.3 Antiderivative linearity rules						
		Function	General antiderivative			
1.	Constant Multiple Rule:	kf(x)	kF(x) + C, k a constant			
2.	Negative Rule:	-f(x)	-F(x) + C			
3.	Sum or Difference Rule:	$f(x) \pm g(x)$	$F(x) \pm G(x) + C$			

Linearity Rules

TABLE 4.3 Antiderivative linearity rules						
		Function	General antiderivative			
1.	Constant Multiple Rule:	kf(x)	kF(x) + C, k a constant			
2.	Negative Rule:	-f(x)	-F(x) + C			
3.	Sum or Difference Rule:	$f(x) \pm g(x)$	$F(x) \pm G(x) + C$			

Example. Find the antiderivative of $\sin x + 5x^4 - 2$.

Example. Find the antiderivative of $\sin x + 5x^4 - 2$.

The Indefinite Integral

DEFINITION The collection of all antiderivatives of f is called the **indefinite integral** of f with respect to x, and is denoted by

 $\int f(x) \, dx.$

The symbol \int is an **integral sign**. The function f is the **integrand** of the integral, and x is the **variable of integration**.

The Indefinite Integral

DEFINITION The collection of all antiderivatives of f is called the **indefinite integral** of f with respect to x, and is denoted by

 $\int f(x) \, dx.$

The symbol \int is an **integral sign**. The function f is the **integrand** of the integral, and x is the **variable of integration**.

Example. Evaluate $\int (\sin x + 5x^4 - 2)dx$.

Challenge Problem

Evaluate $\int (6\sin 3x + x^2 - 12e^{2x}) dx$.