MATH211
Calculus Il Integral Calculus

Module 2 Applications of Definite Integrals
Topic 1: Volumes Using Cross -Sections

Pangyen(Ben) Weng, Ph.D.
Metropolitan State University

St. Paul, MN



Slicing Up a Veolume
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Slicing Up a Volume
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Volume by the Slice
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Plane reeion whose

h = height

Cylindrical solid based on region
Volume = base area X height = Ah




Slicing It Up Using a Partition
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A Volume 'Formula'for Integrals

DEFINITION The volume of a solid of integrable cross-sectional area A(x)
from x = a to x = b 1s the integral of 4 from «a to b,



A Volume 'Formula'for Integrals

DEFINITION The volume of a solid of integrable cross-sectional area A(x)
from x = a to x = b 1s the integral of 4 from «a to b,

Calculating the Volume of a Solid

1. Sketch the solid and a typical cross-section.

2. Find a formula for A(x), the area of a typical cross-section.
3. Find the limits of integration.

4. Integrate A(x) to find the volume.



EXAMPLE 1 A pyramid 3 m high has a square base that is 3 m on a side. The cross-
section of the pyramid perpendicular to the altitude x m down from the vertex i1s a square
x m on a side. Find the volume of the pyramid.

Typical cross-section




EXAMPLE 2 A curved wedge is cut from a circular cylinder of radius 3 by two planes.
One plane is perpendicular to the axis of the cylinder. The second plane crosses the first
plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.
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