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Exercises 14.1

Domain, Range, and Level Curves 21. f(x,y) = xy 22. f(x,y) = y/x*
In Exercises 1-4, find the specific function values. 1 5 5
. = — . = _ —
V 1. f(x,y) — x2 + xy3 23 f(xay) \/m 24 f(xyy) V9 X Yy

. f(0,0 b. f(—1,1 _
a f( ) f( ) 25. f(x,y) =1n (xz + y2) 26. f(x,y) _— (x2+yz)
c. f(2,3) d. f(—3,-2)

2. f(x,y) = sin (xy) 27. f(x,y) = sin"' (y — x) 28. f(x,y) = tan™! ()}})

29. f(x,y) =In(x>2+y*> = 1) 30. f(x,y) =In(9 — x> — y?)
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xX—y Matching Surfaces with Level Curves
3. fley.2) = ey Exercises 31-36 show level curves for the functions graphed in
(a)—~(f) on the following page. Match each set of curves with the ap-

a. f(3,-1,2) b. f <1, %, —%) propriate function.

c. f(O, —%, 0) d. £(2,2,100)
4. f(x,y,z) = V49 — ¥ — y2 - 72

a. f(0,0,0) b. £(2,-3,6)

4 5 6
C. f(_19233) d’ f<797a7)
V2 V2 V2

In Exercises 5-12, find and sketch the domain for each function.
5 fx,y) = Vy—x-2

6. f(x,y) = In(x*+ y* —4)

x—=1Dy +2)
HRA e ——
sin (xy)
B = T s

9. f(x,y) = cos ' (y — x?)

10. f(x,y) =In(xy +x—y—1)

1. f(x,y) = V(x> — 4)(> = 9)
1

In(4 —x2 —y?)

12. f(x,y) =

In Exercises 13-16, find and sketch the level curves f(x,y) = ¢ on
the same set of coordinate axes for the given values of ¢. We refer to
these level curves as a contour map.

VB fey) =x+y -1 c=-3,-2-1,0,123
4. f(x,y) =x>+y% ¢=0,1,49, 16,25

\/15. fx,y) =xy, ¢c=-9,-4,-1,0,1,4,9

(

16. f(x,y) = V25 —x* =32, ¢=0,1,2,3,4

In Exercises 17-30, (a) find the function’s domain, (b) find the function’s
range, (c¢) describe the function’s level curves, (d) find the boundary
of the function’s domain, (e) determine if the domain is an open re-
gion, a closed region, or neither, and (f) decide if the domain is bounded
or unbounded.

17 fley) =y = x 8. ) = Vi x
19. f(x,y) = 4x* + 9y? 20. f(x,y) = x — 2
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Functions of Two Variables

Display the values of the functions in Exercises 37-48 in two ways:
(a) by sketching the surface z = f(x, y) and (b) by drawing an assort-
ment of level curves in the function’s domain. Label each level curve
with its function value.

Vv 371 flx,y) = y? 38. f(x,y) = Vi
39. f(x,y) = x> + 2 40. f(x,y) = Vx2 +?
41. f(x,y) =x* =y 2. f(x,y) =4 —x>—y?
43. f(x,y) = 4x* + y? 4. f(x,y) =6 — 2x — 3y
45. f(x,y) =1 =y 46. f(x,y) =1 —|x| —|y]

47. f(x,y) = Vx> +y2+4 48, f(x,y) = Vx? +y? — 4

Finding Level Curves
In Exercises 49-52, find an equation for and sketch the graph of the
level curve of the function f(x, y) that passes through the given point.

49. f(x,y) =16 — x> — y2, (2\/5, \/2)
50. f(x,y) = Vx> —1, (1,0)

51 fu,y) = Vx + 2 =3, (3,-1)

2y — x
J (-1.1)

2. fe) = w T

Sketching Level Surfaces
In Exercises 53—00, sketch a typical level surface for the function.

53, f(x,y,z) =x2+y2 + 22 54, f(x,y,z) = In(x% + y2 + z?)
55. f(x,y,z) =x + z 56. f(x,y,z) =z

57. f(x,y,z) = x> + y2 58. f(x,y,z) = y* + 22

59. f(x,y,z) =z — x? — y?

60. f(x,v,z) = (x2/25) + (¥2/16) + (z%/9)

Finding Level Surfaces
In Exercises 61—64, find an equation for the level surface of the func-
tion through the given point.

61‘ f(xayyz)z Vx_y_lnza (37_17 1)
62. f(x,y,z) =In(x>+y+2z3), (=1,2,1)



Exercises 14.2

Limits with Two Variables

Find the limits in Exercises 1-12.
3x2 — y2 +5

VA

. lim 3 3
(,»)=(00) x= + y°+ 2
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Whenever it is correctly defined, the composite of continuous functions is also continu-
ous. The only requirement is that each function be continuous where it is applied. The proof,
omitted here, is similar to that for functions of a single variable (Theorem 9 in Section 2.5).

Continuity of Composites

If f is continuous at (xg, yp) and g is a single-variable function continuous at
f(x0, y0), then the composite function 2 = g o f defined by &(x, y) = g(f(x, y))
is continuous at (xg, o).

For example, the composite functions
Xy
e’ ™, CoS —5——, In(1 + x%?)
x2+ 1 Y
are continuous at every point (x, ).

Functions of More Than Two Variables

The definitions of limit and continuity for functions of two variables and the conclusions
about limits and continuity for sums, products, quotients, powers, and composites all ex-
tend to functions of three or more variables. Functions like

ysinz
x—1

In(x +y + 2) and

are continuous throughout their domains, and limits like

ex+z el—l

. 1
lim =,
P—(1,0,—1) ZZ + cos \/); (_1)2 + cos 0 2

where P denotes the point (x, y, z), may be found by direct substitution.

Extreme Values of Continuous Functions on Closed, Bounded Sets

The Extreme Value Theorem (Theorem 1, Section 4.1) states that a function of a single
variable that is continuous throughout a closed, bounded interval [a, b] takes on an ab-
solute maximum value and an absolute minimum value at least once in [a, b]. The same
holds true of a function z = f(x, y) that is continuous on a closed, bounded set R in the
plane (like a line segment, a disk, or a filled-in triangle). The function takes on an ab-
solute maximum value at some point in R and an absolute minimum value at some
point in R.

Similar results hold for functions of three or more variables. A continuous function
w = f(x,y, z), for example, must take on absolute maximum and minimum values on any
closed, bounded set (solid ball or cube, spherical shell, rectangular solid) on which it is de-
fined. We will learn how to find these extreme values in Section 14.7.

‘ . 1 1Y)
3. lim Vx2+y2-1 4. lim (f + 7>
(x,y)—(3.4) Y @y—2, - \* Y

x2+y3

2. lim - .
i 5.1 t 6. 1 — 2
()= 0 \/y () oy STV VO 0 S T
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7. lim " 8 lim  In|l + x%y?|
(x, y)=(0,In2) (x, y)—(1,1)
9. li ehicﬂ 10. lim cos'V xy
(x,»)—(0,0) (v, y)—(1/27, )
1L lim xsmy L. fim cosy + 1
v (x, y)—>(1 /6) x2 + 1 (x, )= 77/20 y — sinx

Limits of Quotients
Find the limits in Exercises 13—24 by rewriting the fractions first.

2 2 2 2
x“—=2xy+y -y
13. li — 14. li
v (1) r-y () ¥V
X7y xX#y
xy—y—2x+2
15. —_—
v (x,y)l—>m(1,l) x =1
x#1
+ 4
16.  lim z
(x,y)ﬁ(Z —4) x%y — xy + 4x? — 4x
yE—4, x£X
17 i x—y-i-2\/;c—2\6
. im
(,7)—(0,0) Vi = \Vy
x#y
18 x + xty—4 4 19. im V2x —y—2
’ <vy)—>(zz>x/x+y_2 ()0 2x—y— 4
x+y#4 2x—y#4
Vi - Vy + 1
Vv 20. lim ——————
y—@43 x—y—1
x#y+1
s2 2
sin (x* + 1 — cos(x
2. gm SRSy gy LT
(=00  x*+y (x,)—(0.,0) Xy
. X+ y3 . x—y
23. lim ———— 24. 1 -
@y—01-1 x+y y)—ext —y
Limits with Three Variables
Find the limits in Exercises 25-30.
. 1,11 . 2xy + yz
25. 1 -+ =+ = 26. 1 —
p—(154) (x y Z) Pt X2 + 22
27.  lim (sin®x + cos’y + sec’z)
P—(m,m,0)
28. lim tan™! xyz 29.  lim  ze ¥ cos2x
P—(—1/4,7/2,2) P—(,0,3)
30.  lim  InVx? 4+ y? + 22
P—(2,-3.6)

Continuity in the Plane
At what points (x, y) in the plane are the functions in Exercises 31-34
continuous?

31. a. f(x,y) = sin(x + y) b. f(x,y) = In(x> + y?)
x+y y

32. a. f(x,y) = X—y b. f(X,J/) =3 1

3 1 _ x+y

- a glxny) =sin 5 b. 2(%2) = 3 o x
2 2

34. a. g(x,y) = Yy b. g(x,y) = !

x2—=3x+2 xz—y

Continuity in Space
At what points (x, y, z) in space are the functions in Exercises 35-40
continuous?

35. a. f(x,y,z) = x>+ y2 — 222

b. f(x,y,z) = Vx2+y2—1

36. a. f(x,y,z) = Inxyz b. f(x,y,z) = eV cosz
.1 1
37. a. h(x,y,z) = xysin b. h(x,y,z) = T
1
38. a. hx,y,z) = —— b hlxyz)=r—""
Iy + |zl lxy| + |z
39. a. h(x,y,z) =In(z—x>2—y>2— 1)
1
b. h(xayyz) = =
z— Vx?+ y2
40. a. h(x,y,z) = V4 — x> —y? = 22
b. h(x,y,z) = !

4—-Vat+y2+22-9

No Limit at a Point
By considering different paths of approach, show that the functions in
Exercises 41-48 have no limit as (x, y) — (0, 0).

x4

X
\/ 41. f(x,y) = —?)}2

42. f(x,y) =

x4+y2

4 2
V3. fry) = 2 4. fry) = —
f(x,») S f(x,») ol
x—y -y
v 45 gy = 46. g(x.y) = 7=
47. hix,y) = y 48. hix,y) = i
¥ Eg

Theory and Examples

In Exercises 49 and 50, show that the limits do not exist.
xy + 1
2

x? =1

49.  lim
@y—an y—1

50.

lim 3
@y—=0-x> —y

L, y=x

51. Let f(x,y) =1, y=0

0, otherwise.
Find each of the following limits, or explain that the limit does not ex-
ist.

. i )
TR RRTY 1)f(x Y)

b. (x, y)
(xy)—>(23)f 7

c. f(x, )

(x )’)—’(0 0)



2 >
v/ 52. Let f(x,y) = {;{ ;C; g
Find the following limits.
. y)i% -2) Jxy)
b g, )
© oo, Y)

53. Show that the function in Example 6 has limit 0 along every
straight line approaching (0, 0).

54. 1f f(x0,»0) = 3, what can you say about
lim X,
(x, y)—(x0, y0) fz)

if f is continuous at (xg, y¢)? If f is not continuous at (xg, yo)?
Give reasons for your answers.

The Sandwich Theorem for functions of two variables states that if
g(x,y) = f(x,y) = h(x, y) forall (x,y) # (x¢, o) in a disk centered
at (xo,y0) and if g and h have the same finite limit L as
(x, ) = (x0, y0), then

lim x,y) = L.
(x, y)—=(x0, y0) fx)

Use this result to support your answers to the questions in Exercises
55-58.

55. Does knowing that

! xzy2 tan  xy
C 3 xy

tell you anything about

tan”! x
R —
=00
Give reasons for your answer.
56. Does knowing that

2.2
X
2|y| - Ty < 4 — 4cos Vixy| < 2|xy|

tell you anything about
4 — 4cos \/|xy|q

lim
(x,)=(0,0) ||
Give reasons for your answer.

57. Does knowing that|sin (1/x)| = 1 tell you anything about

1
lim —‘7
(x, v)—> (0 O)y sin

Give reasons for your answer.

58. Does knowing that|cos (1/y)| = 1 tell you anything about

lim  xcos 1 ?
(x,7)—(0,0) y

Give reasons for your answer.
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59. (Continuation of Example 5.)

a. Reread Example 5. Then substitute m = tan 6 into the formula

__2m
y=mx 1+ m2

fx.y)

and simplify the result to show how the value of f varies with
the line’s angle of inclination.

b. Use the formula you obtained in part (a) to show that the limit
of f as (x,y) — (0, 0) along the line y = mx varies from —1
to 1 depending on the angle of approach.

60. Continuous extension Define f(O, 0) in a way that extends

2

-y

X, Xy 5 5
fl,y) = yx2+y

to be continuous at the origin.

Changing to Polar Coordinates If you cannot make any hcadway
with lim(, ,)—(0,0) f(x, ) in rectangular coordinates, try changing to
polar coordinates. Substitute x = rcos 6, y = rsin 6, and investigate
the limit of the resulting expression as » — 0. In other words, try to
decide whether there exists a number L satisfying the following crite-
rion:

Given € > 0, there exists a & > 0 such that for all » and 6,

[l <8 = |f(r,0) —L|<e. (1)

If such an L exists, then

lim cosB,rsinf) = L
(x, })—>(0 0) flx.y) = r—0 flr " )
For instance,
3 3003
lim = 1im T8 i cos?6 = 0
(5, )=(0,00 x° + » =0 7 r—0

To verify the last of these equalities, we need to show that Equation (1) is

satisfied with f(r, #) = rcos’ 0 and L = 0. That is, we need to show
that given any € > 0, there exists a 6 > 0 such that for all 7 and 6,

[r]<8& = |rcos’d —0|<e.
Since

|rcos’ 8] = |rl|cos’ 0| < |r|-1 =|r|,

the implication holds for all 7 and 6 if we take 6 = e.

In contrast,
x> rlcos?0
2

24 y2 = . = cos’ 0
takes on all values from 0 to 1 regardless of how small |r| is, so that
lim(x_y)_,(oso)xz/ (x2 + y?) does not exist.

In each of these instances, the existence or nonexistence of the
limit as » — 0 is fairly clear. Shifting to polar coordinates does not al-
ways help, however, and may even tempt us to false conclusions. For
example, the limit may exist along every straight line (or ray)
0 = constant and yet fail to exist in the broader sense. Example 5
illustrates this point. In polar coordinates, f(x, y) = (2x2y) / (x* +y?)
becomes

7 cos 0 sin 20

rcos@,rsinf) = ———— ———
N ) r2cos* O + sin?6
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for r # 0. If we hold 0 constant and let » — 0, the limit is 0. On the
path y = x2, however, we have sin 8 = r2 cos® § and

7 cos 6 sin 26
rcos*d + (rcos?6)?

f(rcosf, rsinf) =

_ 2rcos’Osinf _ rsinf
r? cos? 6

2r2cos* 0

In Exercises 61-66, find the limit of f as (x, y) — (0, 0) or show that
the limit does not exist.

3 2 3 3
x> = xy x° =y
61. f(x,y) = ——— 62. f(x,y) = cos | ———
Voo fe = J5.3) (x2+y2)
v 6. flay) = i 64 flry) = 25
)c2 + y2 x2 + x + y2
x| + Iyl)
65. ; = tan~! (7
v 05 [(x.») 21y
2 2
x*—y
66. . =
fx,y) RS

In Exercises 67 and 68, define f(0, 0) in a way that extends f to be
continuous at the origin.

3x2 — x? + 3y2>
67. V) =In|————F—
f(x,») ( R
3x?y
x? +y2

68. f(x,y) =

Using the Limit Definition
Each of Exercises 6974 gives a function f(x, y) and a positive number €.
In each exercise, show that there exists a & > 0 such that for all (x, y),

Vit +32 <8 = |f(xy) = f(0,0)] <e.

69. f(x,y) =x*+ % € =001

. I
70. f(x,y) = y/(x* + 1), € = 0.05
. f(x,y) = (x +y)/(x*> + 1), € =0.01
72. f(x,y) = (x + ¥)/(2 + cosx), € = 0.02

xy2
73. f(x,y) = 5 andf(0,0) = 0, € = 0.04
x“+y
Oyt
74. f(x,y) = 3 5 andf(0,0) = 0, € = 0.02
x“+y

Each of Exercises 75-78 gives a function f(x, y, z) and a positive num-
ber €. In each exercise, show that there exists a & > 0 such that for all

(x, ,2),
m <& = |f(x,y,z) — f(0,0,0)| <e.

75. f(x,y,z) = x>+ y2+ 2% € =0015
76. f(x,y,z) = xyz, € = 0.008
x+y+z
x2+yr+z224 170
78. f(x,y,z) = tan®x + tanzy + tanz, € = 0.03

77. f(x,y,z) = e = 0.015

79. Show that f(x,y,z) = x + y — z is continuous at every point
(X0, ¥0, Z0)-
80. Show that f(x, y,z) = x2 + y2 + z2 is continuous at the origin.

1 4.3 I Partial Derivatives

The calculus of several variables is similar to single-variable calculus applied to several
variables one at a time. When we hold all but one of the independent variables of a function
constant and differentiate with respect to that one variable, we get a “partial” derivative.
This section shows how partial derivatives are defined and interpreted geometrically, and
how to calculate them by applying the rules for differentiating functions of a single variable.
The idea of differentiability for functions of several variables requires more than the exis-
tence of the partial derivatives, but we will see that differentiable functions of several vari-
ables behave in the same way as differentiable single-variable functions.

Partial Derivatives of a Function of Two Variables

If (x0, yo) is a point in the domain of a function f(x, y), the vertical plane y = y, will cut
the surface z = f(x, y) in the curve z = f(x, yo) (Figure 14.15). This curve is the graph
of the function z = f(x, yg) in the plane y = y,. The horizontal coordinate in this plane is
x; the vertical coordinate is z. The y-value is held constant at yy, so y is not a variable.

We define the partial derivative of f with respect to x at the point (xg, o) as the ordi-
nary derivative of f(x, yg) with respect to x at the point x = xq. To distinguish partial de-
rivatives from ordinary derivatives we use the symbol 0 rather than the d previously used.
In the definition, / represents a real number, positive or negative.
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You can see where the epsilons come from in the proof given in Appendix 9. Similar re-
sults hold for functions of more than two independent variables.

DEFINITION A function z = f(x, y) is differentiable at (xo, yo) if f.(x0, o)
and f,(xo, yo) exist and Az satisfies an equation of the form

Az = f(xo, y0)Ax + f,(x0,Y0)Ay + €1Ax + €Ay

in which each of €, €, — 0 as both Ax, Ay — 0. We call f differentiable if it is
differentiable at every point in its domain, and say that its graph is a smooth surface.

Because of this definition, an immediate corollary of Theorem 3 is that a function is
differentiable at (xg, yo) if its first partial derivatives are continuous there.

COROLLARY OF THEOREM 3 If the partial derivatives f, and f, of a function
f(x, v) are continuous throughout an open region R, then f is differentiable at
every point of R.

If z = f(x,y) is differentiable, then the definition of differentiability assures that
Az = f(xo + Ax,yo + Ay) — f(x0, yo) approaches 0 as Ax and Ay approach 0. This tells
us that a function of two variables is continuous at every point where it is differentiable.

THEOREM 4—obifferentiability Implies Continuity If a function f(x,y) is
differentiable at (x¢, o), then f is continuous at (xo, yo).

As we can see from Corollary 3 and Theorem 4, a function f(x, y) must be continuous at a
point (xo, yo) if f, and f, are continuous throughout an open region containing (xo, yo).
Remember, however, that it is still possible for a function of two variables to be discontin-
uous at a point where its first partial derivatives exist, as we saw in Example 8. Existence
alone of the partial derivatives at that point is not enough, but continuity of the partial de-
rivatives guarantees differentiability.

Calculating First-Order Partial Derivatives 19. f(x,y) = x* 20. f(x,y) = logyx

In Exercises 1-22, find df/ox and df/dy.
. flx,y) =26 -3y — 4 2.
3.

4.

- f
- f

fley) =2 = Dy +2)

flny) =50 —Tx* —p2+3x — 6y + 2

Cfley) =y = 1) 6.
L fxy) = Va2 +y? 8.
. flxy) = 1/(x + ) 10.
Cfey) =+ y)/(y = 1) 12

(x,y) = e+l 14.

(x,y) =In(x +y) 16.
. f(x,y) = sin® (x — 3y) 18.

fy) = x = xv + 32 21. f(x,y) = [ g(#)dt (g continuous for all )

22. f(x,y) = Zo(xy)” (x| < 1)

flry) = (2x = 3y)’
fley) = (2 + (y/2))7
fOey) = x/(* + »?)
fr,y) = tan™" (y/x)
flx,y) = e sin(x + y)
flx,y) = e¥Iny V27 flx,y,2) = sin™! (xyz) 28. f(x,v,z) = sec” (x + yz)
f(x,y) = cos® (3x — »?) \/29. f(x,y,z) = In(x + 2y + 3z2)

In Exercises 23-34, find f,, f,, and f,.
\/23. fooy,z) =14 xp? — 222 24. f(x,y,2) = xy + yz + xz
25. f(x,y,z) =x — Vy* + 2*

26. f(x,y,z) = (x> + y* + 22712



30. f(x,v,2) —yzln () 3L flx,p,z) = e XD
2. f(x,y,z) ="
3. f(x,y,z) = tanh (x + 2y + 3z)

34. f(x,v,z) = sinh (xy — z?)

In Exercises 35-40, find the partial derivative of the function with re-
spect to each variable.

35. f(t, @) = cos (27t — «) 36. g(u,v) = ve
37. hip,p,0) = psinpcos® 38. g(r,0,z) = r(1 —cosf) — z
39. Work done by the heart (Section 3.11, Exercise 61)

2 ,(2u/v)

Vouv?
2g

WP, V,8,v,g) = PV +
40. Wilson lot size formula (Section 4.6, Exercise 53)

h
Ale, h, k, m, q) =k7m+cm +7q

Calculating Second-Order Partial Derivatives
Find all the second-order partial derivatives of the functions in Exer-
cises 41-50.

\/41. fx,y)=x+y+xy 42. f(x,y) = sinxy

43. g(x,y) = x’y + cosy + ysinx

44. h(x,y) =xe’ +y + 1 45. r(x,y) =

Vv 46. s(x,y) = tan™! (y/x) 47. w = x?tan (xy)
2 _

48. w = ye* 77

In(x + y)

v 49. w = x sin (x?y)

Xy

50. w = 5
x“+y

Mixed Partial Derivatives
In Exercises 51-54, verify that wy, = wy,.

51. w = In(2x + 3y) 52. w=¢e*+xlny + ylnx

x3? 4+t 54. w = xsiny + ysinx + xy
55. Which order of differentiation will calculate f;, faster: x first or y
first? Try to answer without writing anything down.

53, w = xy?

a. f(x,y) = xsiny + e’

b. f(x,y) = 1/x

e flx,y) =y + (x/y)

d fuy)=y+xy+4°—m(>+1)
e. f(x,y) = x>+ 5xy + sinx + 7e*

f. f(x,y) = xInxy

56. The fifth-order partial derivative 6> f/6x26y3 is zero for each of
the following functions. To show this as quickly as possible, which
variable would you differentiate with respect to first: x or y? Try
to answer without writing anything down.

a. f(x,y) =yt +2

b. f(x,y) =y + y(sinx — x*)

c. f(x,y) = x>+ 5xy + sinx + 7e*
(

d. f(x,y) = xe? 2
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Using the Partial Derivative Definition

In Exercises 57—60, use the limit definition of partial derivative to

compute the partial derivatives of the functions at the specified points.
af af

-1 R o
57. f(x,y) =1 —x+y — 3x%, 5y and 3y at (1,2)

» f
58. f(x,y) =4+ 2x — 3y —xy*, - and

ax a at(=2,1)
V. fle) = VRS LG % at (-2, 3)
sin (x* + y%)
60. f(x,y) =4 2+ ° (x,y) # (0,0)
0 (x,») = (0,0),
% and gl at (0,0)

61. Let f(x,y) = 2x + 3y — 4. Find the slope of the line tangent to
this surface at the point (2, —1) and lying in the a. plane x = 2
b. plane y = —1.

62. Let f(x,y) = x> + y>. Find the slope of the line tangent to this
surface at the point (—1, 1) and lying in the a. plane x = —1
b. plane y = 1.

63. Three variables Letw = f(x,y, z) be a function of three inde-
pendent variables and write the formal definition of the partial
derivative df/0z at (xg, yo , zo). Use this definition to find 9 f/dz at
(1,2, 3) for f(x,y, z) = x%yz2.

64. Three variables Letw = f(x, y, z) be a function of three inde-
pendent variables and write the formal definition of the partial
derivative f/dy at (xo, vo, zo). Use this definition to find df/dy at
(—1,0,3) for f(x,y,z) = —2xp* + yz°.

Differentiating Implicitly

v 65. Find the value of 9z/dx at the point (1, 1, 1) if the equation

xy +z2x — 22 =10
defines z as a function of the two independent variables x and y
and the partial derivative exists.

66. Find the value of dx/dz at the point (1, —1, —3) if the equation

xz+ylnx—x2+4=0
defines x as a function of the two independent variables y and z
and the partial derivative exists.

Exercises 67 and 68 are about the triangle shown here.
B

C b A

67. Express 4 implicitly as a function of a, b, and ¢ and calculate
dA/da and 9A4/db.

68. Express a implicitly as a function of 4, b, and B and calculate
da/dA4 and da/dB.

69. Two dependent variables Express v, in terms of « and y if the
equations x = vInu and y = u Inv define u# and v as functions
of the independent variables x and y, and if v, exists. (Hint: Dif-
ferentiate both equations with respect to x and solve for v, by
eliminating u,.)
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70. Two dependent variables Find dx/0u and dy/ou if the equa-
tions u = x> — y? and v = x?> — y define x and y as functions
of the independent variables « and v, and the partial derivatives
exist. (See the hint in Exercise 69.) Then let s = x? + y? and find
ds/ou.

3 =
yo y =
71. Let f(x,y) =
et f(x,») {_yz, <o,
Find fy, f, fu» and f,, and state the domain for each partial

derivative.

72. Let f(x,y) = {\2/;’ x=0

X, x < 0.

Find f,, f\, fu, and f,, and state the domain for each partial
derivative.

Theory and Examples
The three-dimensional Laplace equation

Cf Pf P
a2t st =0

ox Ay 0z
is satisfied by steady-state temperature distributions 7 = f(x, y, z) in
space, by gravitational potentials, and by electrostatic potentials. The
two-dimensional Laplace equation

2 20

0x )%
obtained by dropping the f/az2 term from the previous equation,
describes potentials and steady-state temperature distributions in a
plane (see the accompanying figure). The plane (a) may be treated as
a thin slice of the solid (b) perpendicular to the z-axis.

X 0
L 4+ L _9
ox? * oy?
@ /
[ ]

(b)

Boundary temperatures controlled

Show that each function in Exercises 73—80 satisfies a Laplace
equation.

V3. f(x,v,z) = x> + y? — 222

74, f(x,v,2) =223 — 3(x%> + y?)z

Vv 75. f(x,y) = e cos 2x

76. f(x,y) = InVx2 + y?2
77. f(x,y) =3x +2y — 4

-1 X

78. f(x,y) = tan 5

V79 flx,y,z) = (x2 +y2 + 22712

80. f(x,v,z) = e cos 5z

The Wave Equation If we stand on an ocean shore and take a snap-
shot of the waves, the picture shows a regular pattern of peaks and val-
leys in an instant of time. We see periodic vertical motion in space,
with respect to distance. If we stand in the water, we can feel the rise
and fall of the water as the waves go by. We see periodic vertical mo-
tion in time. In physics, this beautiful symmetry is expressed by the
one-dimensional wave equation

Pw _ itw

ar* ax?’

where w is the wave height, x is the distance variable, ¢ is the time
variable, and c is the velocity with which the waves are propagated.

NPT

In our example, x is the distance across the ocean’s surface, but in
other applications, x might be the distance along a vibrating string,
distance through air (sound waves), or distance through space (light
waves). The number ¢ varies with the medium and type of wave.

Show that the functions in Exercises 81-87 are all solutions of
the wave equation.

81. w = sin (x + cf)

82. w = cos (2x + 2ct)

83. w = sin (x + ct) + cos (2x + 2ct)

84. w = In(2x + 2ct) 85. w = tan (2x — 2cf)
86. w = 5cos (3x + 3ct) + &

87. w = f(u), where f is a differentiable function of u, and u =
a(x + ct), where a is a constant

88. Does a function f(x, y) with continuous first partial derivatives
throughout an open region R have to be continuous on R? Give
reasons for your answer.

89. If a function f(x,y) has continuous second partial derivatives
throughout an open region R, must the first-order partial deriva-
tives of f be continuous on R? Give reasons for your answer.
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Exercises 14.4

Chain Rule: One Independent Variable

In Exercises 1-6, (a) express dw/dr as a function of ¢, both by using the
Chain Rule and by expressing w in terms of ¢ and differentiating di-
rectly with respect to «. Then (b) evaluate dw/dr at the given value of .

- w=x*+y% x=cost, y=sint, t=m

2.w=x2+y2, X =cost +sint, y=cost—sint; t=0

V3.

S
I

x Y .
=Z+7% x=cos’t, y=sin’t, z=1/t; t=3

Z?
4. w=1In(x2+y>+ 2%, x=cost, y=sint, z=4\/t;
t=3
V5. w=2pe* — Inz, x=1In(?+1), y=tan_1t, z=el;
t=1
6. w=z—sinxy, x=1 y=Int, z=e"l =1

Chain Rule: Two and Three Independent Variables
In Exercises 7 and 8, (a) express dz/du and dz/dv as functions of  and
v both by using the Chain Rule and by expressing z directly in terms
of u and v before differentiating. Then (b) evaluate dz/du and dz/dv at
the given point (u, v).
v 7. z=4e*Iny, x =In(ucosv), y = usinv;
(u,v) = (2, 7/4)
8. z=tan"!(x/y), x =ucosv, y= usinv;
(u,v) = (1.3, 7/6)

In Exercises 9 and 10, (a) express dw/du and dw/dv as functions of u
and v both by using the Chain Rule and by expressing w directly in
terms of u and v before differentiating. Then (b) evaluate dw/du and
dw/dv at the given point (i, v).

VI w=xy+tyz+xz, x=utv, y=u-—v, z=uv,

(u,v) = (1/2,1)

10 w=In(x>+ y> +z2), x=ue’sinu, y = ue’cosu,

(u,v) = (=2,0)

z = ue';

In Exercises 11 and 12, (a) express du/dx, du/dy, and du/dz as func-
tions of x, y, and z both by using the Chain Rule and by expressing u
directly in terms of x, y, and z before differentiating. Then (b) evaluate
du/ox, du/dy, and ou/dz at the given point (x, y, z).

P—q

ll.u=ﬁ, p=x+ty+z, g=x—y+z

= (V3,2,1)

12. u=e¥sin'p, p=sinx, ¢ =2z>2Iny, r=1/z
(x,y,z) = (7/4,1/2,—1/2)

r=x+y-—z (xy2)

Using a Branch Diagram
In Exercises 13-24, draw a branch diagram and write a Chain Rule
formula for each derivative.

13. Cforz = fy), x=g), y=h)

dt

14. %forz = flu,v,w), u=g(t), v=~hn), w=k)
aw

15. 91 andfforw = h(x,y,z), x=fu,v), y=gluv),

z = k(u, v)

Vv 29. D —xy+yz+yi—-2=0,

aw

aw _ _ _

16. aandgfor w=f(r,s,0), r=glxy), s=hlxy),
t = k(x,y)
aw

v 5 d*forw =glx,y), x=hluv), y=kluv)

Jow

18. gandfforw glu,v), u=hxy), v=kxy)

19. %andfforz = fxy), x=glts), y=hits)

ady
20. - fory = f(u), u=g(rys)

\/21. fand forw g(u), u=his, 1)

as
2. M, £ )
. ap orw = x:yazava

z _J(pa CI),

x=g(p.q), y=hp,q,
v =4k(p,q)

23. ﬁand forw = f(x,y), x=g(r), y=hs)
24. ‘Lsforw =gxy), x=hrs 1), y=klrs,1)

Implicit Differentiation

Assuming that the equations in Exercises 25-28 define y as a differen-
tiable function of x, use Theorem 8 to find the value of dy/dx at the
given point.

Vv 25 =22+ xy=0, (1,1)

26. xy +y2—3x—3=0, (—1,1)

v 27. X +xy+y2—7=0, (1,2)

28. xe¥ + sinxy +y —In2 =0, (0,In2)
Find the values of 9z/dx and dz/dy at the points in Exercises 29-32.
(1, 1,1)

1,1 1

30.;4‘;4‘5—1:0, (2,3,())
V4 31. sin(x +y) +sin(y +z) +sin(x +z2) =0, (7,7, m)
32. xe¥ +ye" +2Inx —2—-=3In2=0, (1,In2,In3)

Finding Partial Derivatives at Specified Points

33. Find ow/or when r=1,s=—-1 if w=(x+y+ 2)?,
x=r—s,y=cos(r+s),z=sin(r+s).

34. Find ow/dv  when
x = vz/u,y =u+v,z=cosu.

35. Find dw/ov when u=0,v=0 if
x=u—-2v+l,y=2u+v—2.

36. Find dz/ou when u=0,v=1 if z=sinxy + xsiny,
x=u’+ vz,y= uv.

37. Find 09z/ou and 9dz/dv when u=Imm2,v=1 if z=
5tan"'x and x = e + Inw.

38. Find 0z/0u and dz/ov when u=1,v=-2 if z=Ing
and ¢ = Vv + 3tan" .

u=—-lLv=2 if w=xy+Inz

=x2 + (y/x),
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39. Assume that w = f(s° + /%) and f'(x) = e*. Find(Tv;and (Tv;

af af 2
) = 2 8\ L = e =X
40. Assume that w f(ls , t)’ p (x,y) = xp, and 3 (x,y) x

41.

42.

v 43.

44.

v 4.

46.

. 0w Jdw
Fde and s

Changing voltage in a circuit The voltage } in a circuit that
satisfies the law V' = [R is slowly dropping as the battery wears
out. At the same time, the resistance R is increasing as the resistor
heats up. Use the equation

av _ovdl , oV dR

dt  dl dt  OR dt
to find how the current is changing at the instant when R =
600 ohms, [ = 0.04 amp, dR/dt = 0.5 ohm/sec, and dV/dt
—0.01 volt/sec.

1%

+ —
| Battery

1

R

Changing dimensions in a box The lengths a, b, and ¢ of the
edges of a rectangular box are changing with time. At the instant
in question, a =1m, b=2m, ¢=3m, da/dt = db/dt =
1 m/sec, and de/dt = —3 m/sec. At what rates are the box’s vol-
ume V and surface area S changing at that instant? Are the box’s
interior diagonals increasing in length or decreasing?
If f(u, v, w) is differentiable and v = x — y,v =y — z, and
w = z — x, show that

af of of

aix + E + g = 0.
Polar coordinates Suppose that we substitute polar coordinates
x=rcosf and y =rsinf in a differentiable function

w = f(x,»).
a. Show that
ow _ .
o = frcosO + f,sinf
and
%%V = —fysinf + f,cos6.

b. Solve the equations in part (a) to express fy and f, in terms of
dw/or and dw/de.
¢. Show that

2 2
(P + () = ("ﬁ,—w) s (?,—;”) .

Laplace equations Show that if w = f(u, v) satisfies the
Laplace equation f,, + f,, = 0 and if u = (x> — y?)/2 and
v = xy, then w satisfies the Laplace equation wy, + wy, = 0.
Laplace equations Let w = f(u) + g(v), where u = x + iy,
v =ux — iy, and i = V —1. Show that w satisfies the Laplace
equation wy, + w), = 0 if all the necessary functions are differ-
entiable.

47.

48.

49.

50.
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Extreme values on a helix Suppose that the partial derivatives
of a function f(x, y, z) at points on the helix x = cost,y = sint,
z = tare

fo=t*+1-2.

fy = cost, fy = sint,

At what points on the curve, if any, can f take on extreme values?

A space curve Let w = x2e? cos 3z. Find the value of dw/dt
at the point (1,In2,0) on the curve x = cost,y = In(z + 2),
z =1

Temperature on a circle Let 7 = f(x, y) be the temperature
at the point (x, ) on the circle x = cost,y = sint,0 =t = 27
and suppose that

oT T

$=8x—4y,

6y= y — 4x.

a. Find where the maximum and minimum temperatures on the
circle occur by examining the derivatives d7/dt and d*>T/dt>.

b. Suppose that 7 = 4x? — 4xy + 4y Find the maximum and
minimum values of 7 on the circle.

Temperature on an ellipse Let 7 = g(x, y) be the temperature
at the point (x, y) on the ellipse

x = 2\/§cost, y = ﬁsint,

0=t=2m,

and suppose that

ar _ ar _
o )%

a. Locate the maximum and minimum temperatures on the el-
lipse by examining d7/dt and d>T/dr>

b. Suppose that 7 = xy — 2. Find the maximum and minimum
values of 7 on the ellipse.

Differentiating Integrals Under mild continuity restrictions, it is
true that if

b
Flx) = / o(t,%) di,

b
then F'(x) = / g.(t, x) dt. Using this fact and the Chain Rule, we
a

can find the derivative of

by letting

G(u, x) = /ug(t, Xx) dt,

where u = f(x). Find the derivatives of the functions in Exercises 51
and 52.

x2 1
51. I(x) = / Vit + x3dr 82 Flx) = /2 V13 + x2dr
0 X
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EXAMPLE 6

(a)

(b)

Find the derivative of f(x,y,z) = x> — xy? — z at Py(1,1,0) in the direction of
v = 2i — 3j + ok.
In what directions does f change most rapidly at Py, and what are the rates of change
in these directions?

Solution

(@)

(b)

Exercises 14.5

The direction of v is obtained by dividing v by its length:

V] = V(2P + (=3 + (6> = V49 = 7

-V _2,_ 3:,6
u—|v|—71 7J+7k.

The partial derivatives of f at Py are
fo=0G =D =2 fr="20la10="-2  f.=—1aig=—1
The gradient of f at Py is

Vilaio = 2i — 2j — k.

The derivative of f at Py in the direction of v is therefore

. . 2. . 6
(Duf)a10) = Viliogu=(2i —2j —k)* (71 -Zit 7k>

+

IS EN
3|

2|
Qs

The function increases most rapidly in the direction of Vf = 2i — 2j — k and de-
creases most rapidly in the direction of —Vf. The rates of change in the directions are,
respectively,

IVFl= VP + (=27 + (-1 =V9=3 and —|Vf|=-3. m

Calculating Gradients

Finding Directional Derivatives

In Exercises 1-06, find the gradient of the function at the given point. In Exercises 11-18, find the derivative of the function at Py in the di-
Then sketch the gradient together with the level curve that passes rection of u.
through the point.

VI ey =y—x 21 2 fxy) =

V1L f(x,y) = 2xp — 3y%, Py(5,5), u = 4i+ 3j

(x? +y) (1, 1) 5 ) . .
12. f(x,y) = 2x~ + y°, Po(=1,1), u = 3i—4j

2

= 0,2 =X _Z_
3ogley) =n (2,-1) 4 gy =% - 2 (V2,1) i3 ) - ST S e gie s
5. f(x,y) = V2x + 3y, (—1,2) w + 2
e 14. h(x,y) = tan™! (v/x) + V3sin™ (w/2), Po(1, 1),
6. f(x,y) = tan™ -5 4-2) u = 3i — 2j
15. f(x,y,2) = xy + yz + zx, Py(1,—1,2), u=3i+ 6j — 2k

In Exercises 7-10, find Vf at the given point. 5 5 5 L
\/7 Fovz) = x>+ y2 = 2:2 4 zlnx, (1, 1,1) 16. f(x,y,z) = x ’+ 27— 3z%, Py(1,1,1), u=i+j+k

8. flx,v,z) = 223 = 3(x2 + y 2 4 tanlxz, (1,1,1) v 17 g(x,y,z) = 3e*cosyz, Py(0,0,0), u=2i+j—2k
V9 f(x,p,z2) = (x> + 2+ 272 + In(xy2), (—1,2,-2) 18. h(x,y,z) = cosxy + e”* + Inzx, Py(1,0,1/2),

10. f(x,v,z) = e Veosz + (y + 1)sin'x, (0,0, 7/6) u=i+2j+2k



In Exercises 1924, find the directions in which the functions increase
and decrease most rapidly at Py. Then find the derivatives of the func-
tions in these directions.

v 19.
20.

v 2L
22.

v 23.
24.

fly) =x" +xp +p% Po(=1,1)
fx,y) = x% + e¥siny, Py(l1,0)

(
fGey,2) = (x/y) = yz, Po(4,1,1)
gx,y,2) = xe¥ + 2%, Py(1,In2,1/2)
fx,y,z) = Inxy + Inyz + Inxz, Po(1,1,1)
hx,y,z) =In(x®>+y> = 1) +y + 6z, Py(1,1,0)

Tangent Lines to Level Curves

In Exercises 25-28, sketch the curve f(x, y) = c together with Vf and
the tangent line at the given point. Then write an equation for the
tangent line.

\/25.
26.
27.
28.

x2+y2=4, (%,ﬁ)
x2—y=1, (\/i,l)

xw=-4 (2,-2)
oyt yr=7, (-1,2)

Theory and Examples

29.

4

30.

Let f(x,y) = x> — xy + y? — y. Find the directions u and the
values of Dy, f(1, —1) for which

a. D, f(1, —1)is largest
c. Dyf(1,=-1)=0

e. D, f(1,—-1)= -3
=)
ICE0)
,%) for which

b. Dy f(1, —1) is smallest
d. Dy f(1,—1) = 4

Let f(x,y) Find the directions u and the values of

&
~
|

®
&
~

N[ —

s

) is largest b. Dy f(—%,

~_
Il
je)

°®

S
=
~

e
]
=
~
A/~ /|\ N N
N[—  N=
N[ N|w N|w

~_
Il
—

\/31.

32.

v 3.

34.

36.

37.

38.

39.

40.

35.
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Zero directional derivative In what direction is the derivative
of f(x,y) = xy + y*at P(3, 2) equal to zero?

Zero directional derivative In what directions is the derivative
of f(x,y) = (x2 — y2)/(x® + y?) at P(1, 1) equal to zero?

Is there a direction u in which the rate of change of f(x,y) =
x? = 3xy + 4y% at P(1, 2) equals 14? Give reasons for your
answer.

Changing temperature along a circle [s there a direction u in
which the rate of change of the temperature function 7'(x, y, z) =
2xy — yz (temperature in degrees Celsius, distance in feet) at
P(1,—1, 1) is —3°C/ft ? Give reasons for your answer.

The derivative of f(x, y) at Py(1,2) in the direction of i + j is
2V2 and in the direction of —2j is —3 . What is the derivative of
f in the direction of —i — 2j? Give reasons for your answer.

The derivative of f(x, y, z) at a point P is greatest in the direction
of v =i + j — k. In this direction, the value of the derivative is

2V3.

a. What is V£ at P? Give reasons for your answer.
b. What is the derivative of f at P in the direction of i + j?

Directional derivatives and scalar components How is the
derivative of a differentiable function f(x, y, z) at a point Py in the
direction of a unit vector u related to the scalar component of
(Vf)p, in the direction of u? Give reasons for your answer.

Directional derivatives and partial derivatives Assuming that
the necessary derivatives of f(x, y, z) are defined, how are D;f,
D;jf, and Dyf related to fy, f,, and f.? Give reasons for your
answer.

Lines in the xy-plane Show that A(x — xo) + B(y — yp) = 0
is an equation for the line in the xy-plane through the point
(x0, v0) normal to the vector N = A4i + Bj.

The algebra rules for gradients Given a constant & and the

gradients
af . of of og. dg. 0g
Vf—al‘l‘é)*y_]‘l‘gk, Vg—glﬁ'@jﬂ'&k,

establish the algebra rules for gradients.

14.6 | Tangent Planes and Differentials
adll

In this section we define the tangent plane at a point on a smooth surface in space. Then
we show how to calculate an equation of the tangent plane from the partial derivatives of
the function defining the surface. This idea is similar to the definition of the tangent line at
a point on a curve in the coordinate plane for single-variable functions (Section 3.1). We
then study the total differential and linearization of functions of several variables.

Tangent Planes and Normal Lines

If r = g(0)i + A(2)j + k(¢)k is a smooth curve on the level surface f(x,y,z) = c of a
differentiable function f, then f(g(z), A(2), k(f)) = c. Differentiating both sides of this
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Thus,

Lx,y,z) =2 +3(x —2) +(=2)(y = 1) +3(z—0) = 3x — 2y + 3z — 2.
Since
fa=2  fu=0.  fu- fe=0,  fr=0,

and| =3 sinz| = 3sin 0.01 =~ .03, we may take M = 2 as a bound on the second partials.
Hence, the error incurred by replacing f by L on R satisfies

—3sinz,

|E| = %(z)(o.m +0.02 + 0.01)> = 0.0016. -

Exercises 14.6

Tangent Planes and Normal Lines to Surfaces
In Exercises 1-8, find equations for the

(a) tangent plane and
(b) normal line at the point Py on the given surface.
V96 xr+yr+z2=3 Pl 1,1)
2. x2 4+ y2 =22 =18, Py3,5 —4)
v 3 22-x2=0, Py2,0,2)
4. x4+ 2y —y2+22=17, Py(1,-1,3)
5. cosmx — xy + e + yz =4, Py0,1,2)
6. x> —xy—y?—z=0, Pyl,1,—-1)
vV 1. x+y+z=1, Py0,1,0)
8. X2+ yr—2xy—x+3y—z=—4, Py2,-3,18)

In Exercises 9-12, find an equation for the plane that is tangent to the
given surface at the given point.

V9 z=Inx>+ Y, (1,0,0010. z = e (0,0, 1)
1. z=Vy—x, (1,2,1) 12. z =42+ % (1,1,5)

Tangent Lines to Space Curves
In Exercises 1318, find parametric equations for the line tangent to
the curve of intersection of the surfaces at the given point.

v/ 13. Surfaces: x + y2 +2z2=4, x=1
Point: (1,1, 1)
14. Surfaces: xyz = 1, x>+ 2p2 +3z2=06
Point: (1,1, 1)
15. Surfaces: x> + 2y + 2z =4, y=1
Point: (1, 1,1/2)
16. Surfaces:x + y2 +z=2, y=1
Point:  (1/2,1,1/2)
v/ 17. Surfaces: x3 + 3x2y? 4+ 33 + dxy — 22 =0,
x2+y2+22= 11
Point:  (1,1,3)
18. Surfaces: x> + y2 =4, x2+y?—2z=0

Point: (\6, \6, 4)

Estimating Change
v/ 19. By about how much will

flx,y,z) = nVx? + y? + 22

change if the point P(x, y, z) moves from Py(3, 4, 12) a distance
of ds = 0.1 unit in the direction of 3i + 6j — 2k?

20. By about how much will
f(x,y,z) = e*cosyz

change as the point P(x, y, z) moves from the origin a distance of
ds = 0.1 unit in the direction of 2i + 2j — 2k?

v/ 21. By about how much will
g(x,y,z) = x + xcosz — ysinz + y

change if the point P(x, y, z) moves from Py(2, —1, 0) a distance
of ds = 0.2 unit toward the point P;(0, 1, 2)?

22. By about how much will
h(x,y,z) = cos (wxy) + xz2

change if the point P(x, y, z) moves from Py(—1, —1, —1) a dis-
tance of ds = 0.1 unit toward the origin?

V4 23. Temperature change along a circle Suppose that the Celsius
temperature at the point (x, y) in the xy-plane is 7'(x, y) = x sin 2y
and that distance in the xy-plane is measured in meters. A particle
is moving clockwise around the circle of radius 1 m centered at
the origin at the constant rate of 2 m/sec.

a. How fast is the temperature experienced by the particle
changing in degrees Celsius per meter at the point
P(1/2,\V/3/2)

b. How fast is the temperature experienced by the particle
changing in degrees Celsius per second at P?

24. Changing temperature along a space curve The Celsius tem-
perature in a region in space is given by 7'(x, y, z) = 2x? — xyz.
A particle is moving in this region and its position at time ¢ is
given by x = 242, y=3tz= —¢2, where time is measured in
seconds and distance in meters.

a. How fast is the temperature experienced by the particle

changing in degrees Celsius per meter when the particle is at
the point P(8, 6, —4)?

b. How fast is the temperature experienced by the particle
changing in degrees Celsius per second at P?



818 Chapter 14: Partial Derivatives

Finding Linearizations 34, flx,y) = (1/2)x* + xy + (1/4)y> + 3x = 3y + 4at Py(2,2),
In Exercises 25-30, find the linearization L(x, y) of the function at R |x—2[=01, |y—2|=o0.1
each point. ) " )

vV 35 f(x,y) =1+ y+ xcosyat Py0,0),
R |x|=02, |y|=02
(Use|cosy| = 1 and|siny| = | in estimating E.)

V25, fx,y) =x>+y2+1at a (0,0), b (1,1)
26. f(x,y) = (x +y+2)%at a. (0,0, b. (1,2

27. f(x,y) = 3x — 4y + Sat a. (0,0), b. (1,1
V27 ) 3 4 (0.0) (1.1 36. f(x,y) = xy* 4+ ycos(x — 1)at Py(l,2),
28. f(x,y) = x’y*at a. (1, 1), b. (0, 0) & =01, | 2= 01
29. f(x,v) = e*cosyat a. (0,0, b (0,7/2) ST E R e
30, f(r.y) = ¥ T at a. (0,0) b. (1.2) Vv 37. f(x,y) = e*cosyat Py(0,0),
o N S R |x|=01, |y|=0.1
V/31. Wind chill factor Wind chill, a measure of the apparent tem- ] V]

X . . .
perature felt on exposed skin, is a function of air temperature and (Usee® = 1.11 and|cos y| = 1 in estimating £.)

wind speed. The precise formula, updated by the National 38. f(x,y) =Inx + Inyat Py(1,1),
Weather Service in 2001 and based on modern heat transfer the- R |x—1|=02 |y—1]=02
ory, a human face model, and skin tissue resistance, is

W= W, T) = 3574 + 0.6215 T — 3575 ,016 Linearizations for Three Variables

T 0.4275 T+ " 16 Find Fhe 11ne?rlzat10ns L(x, y, z) of the functions in Exercises 39—44 at
the given points.
where T is air temperature in °F and v is wind speed in mph. A

39. f(x,y,z) =xy + yz + xzat
partial wind chill chart is given. v floy s

a. (1,1, 1) b. (1,0,0) c. (0,0,0)
T(°F) 40. f(x,y,z) = x>+ y> + z%at
30 25 20 15 10 5 0 —5 —10 a. (1,1,1) b. (0,1,0) c. (1,0,0)
_ \/ﬁ
s[25 19 13 7 1 -5 —11 —16 —22 | 4 /ler2) = Vatd o+ at
1021 15 9 3 -4 —10 —-16 —22 —28 & (1,0,0) b (1,1,0) e .22
42. f(x,v,z) = (sinxy)/z at
» |15]19 13 6 0 -7 —13 —19 —26 —-32 a (7/2,1,1) b. (2,0, 1)
mph)l 2917 11 4 —2 -9 —15 —22 -29 -35 43. f(x,,2) = e* + cos (y + 2) at
25116 9 3 —4 —-11 —-17 =24 =31 =37 m T
a. (0,0, 0) b. (o, 2,0) c. (0, T 4)
30(15 8 1 =5 —12 =19 =26 —33 -39 1
44. f(x,y,z) = tan"" (xyz) at
35 14 7 0 _7 _14 _21 _27 _34 _41 a. (],0’ 0) b. (]’ 1’0) C. (]9 ]’ ])
a. Use the table to find W(20, 25), W(30, —10), and W(15, 15). In Exercises 4548, find the linearization L(x, y, z) of the function

f(x, v, z) at Py. Then find an upper bound for the magnitude of the
error £ in the approximation f(x, y, z) = L(x, y, z) over the region R.

45. f(x,y,z) = xz — 3yz + 2 at Py(l1,1,2),
R |x—=1]=001, |y —1/=0.01, |z-2]|=0.02
46. f(x,v,z) =x2+ xy +yz + (1/4)22 at Py(1,1,2),

b. Use the formula to find (10, —40), W(50, —40), and
w(60, 30).

¢. Find the linearization L(v, T) of the function W(v, T) at the
point (25, 5).

d. Use L(v, T) in part (c) to estimate the following wind chill

values. R |x—1]=001, |y—1]=00l, |z—2|=008
i) w(24,6) i) W(27,2) 47. f(x,y,z) = xy + 2pz — 3xz at Py(1,1,0),
iii) (5, —10) (Explain why this value is much different R |x —1]=001, |y—1[=001, |z]=0.01
from the value found in the table.) 48. flx,v,2) = /2 cos x sin (y+2) at Py0,0,m/4),
32. Find the linearization L(v, T) of the function W(v, T) in Exercise R |x| =001, |y| =001, |z—m/4| =001
31 at the point (50, —20). Use it to estimate the following wind ’ ’
chill values. Estimating Error; Sensitivity to Change
a. W(49, =22) b. W(53,—19) ¢c. W(60, —30) 49. Estimating maximum error Suppose that 7 is to be found
. o o from the formula 7' = x (e¢” + ¢™), where x and y are found to
Bounding the Error in Linear Approximations be 2 and In 2 with maximum possible errors of |dx| = 0.1 and
In Exercises 33-38, find the linearization L(x, y) of the function |dy| = 0.02. Estimate the maximum possible error in the com-
f(x, y) at Poy. Then find an upper bound for the magnitude | E| of the puted value of 7.

in th roximati ~ L th tangle R.
crror in the approximation f(x; ) (x, y) over the rectangle 50. Estimating volume of a cylinder About how accurately may

33. f(x,y) =x* = 3xy + 5at Po(2, 1), V = 7r2h be calculated from measurements of » and 4 that are in
R |x=2]=01, |y—1|=01 error by 1%?



51.

52.

53.

54.

Consider a closed rectangular box with a square base as shown in
the accompanying figure. If x is measured with error at most 2%
and y is measured with error at most 3%, use a differential to esti-
mate the corresponding percentage error in computing the box’s

a. surface area

b. volume.

~

Consider a closed container in the shape of a cylinder of radius
10 cm and height 15 cm with a hemisphere on each end, as shown
in the accompanying figure.

15 cm

} 10 cm

The container is coated with a layer of ice 1/2 cm thick. Use a dif-
ferential to estimate the total volume of ice. (Hint: Assume r is ra-
dius with dr = 1/2 and A is height with dh = 0.)

Maximum percentage error If » = 5.0cm and 2 = 12.0 cm
to the nearest millimeter, what should we expect the maximum
percentage error in calculating ¥ = -2k to be?

Variation in electrical resistance The resistance R produced
by wiring resistors of R; and R, ohms in parallel (see accompany-
ing figure) can be calculated from the formula

a. Show that

2 2
dR = (R%) dR, + (R%) dRs.

b. You have designed a two-resistor circuit like the one shown to
have resistances of Ry = 100 ohms and R, = 400 ohms, but
there is always some variation in manufacturing and the
resistors received by your firm will probably not have these
exact values. Will the value of R be more sensitive to
variation in R) or to variation in R,? Give reasons for your
answer.

c. In another circuit like the one shown you plan to change R,
from 20 to 20.1 ohms and R; from 25 to 24.9 ohms. By about
what percentage will this change R?

55.

56.

57.

58.

59.

60.

61.
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14.6 Tangent Planes and Differentials

You plan to calculate the area of a long, thin rectangle from
measurements of its length and width. Which dimension should
you measure more carefully? Give reasons for your answer.

a. Around the point (1, 0), is f(x,y) = x*(y + 1) more
sensitive to changes in x or to changes in y? Give reasons for
your answer.

b. What ratio of dx to dy will make df equal zero at (1, 0)?

Error carryover in coordinate changes

P(3+£0.01,4£0.01)

\ ,

a. Ifx =3 % 0.0l and y = 4 £ 0.01, as shown here, with
approximately what accuracy can you calculate the polar
coordinates r and 6 of the point P(x, y) from the formulas
r? =x%+ y2and 6 = tan~' (y/x)? Express your estimates
as percentage changes of the values that » and 0 have at the
point (xo, o) = (3, 4).

b. At the point (xo, o) = (3,4), are the values of 7 and 6 more
sensitive to changes in x or to changes in y? Give reasons for
your answer.

Designing a soda can A standard 12-fl-oz can of soda is essen-

tially a cylinder of radius » = 1 in. and height # = 5 in.

a. At these dimensions, how sensitive is the can’s volume to a
small change in radius versus a small change in height?

b. Could you design a soda can that appears to hold more soda

but in fact holds the same 12 fl 0z? What might its
dimensions be? (There is more than one correct answer.)

Value of a2 X 2 determinant If|a|is much greater than|b|,|c|,
and|d|, to which of a, b, ¢, and d is the value of the determinant
a b ‘

- d) =
fla, b, ¢, d) e d

most sensitive? Give reasons for your answer.

Estimating maximum error Suppose that u = xe” + ysinz
and that x, y, and z can be measured with maximum possible er-
rors of £0.2, £0.6, and +/180, respectively. Estimate the max-
imum possible error in calculating u from the measured values
x=2,y=mn3 z=m/2.

The Wilson lot size formula The Wilson lot size formula in
economics says that the most economical quantity QO of goods
(radios, shoes, brooms, whatever) for a store to order is given by
the formula QO = V2KM/h , where K is the cost of placing the
order, M is the number of items sold per week, and % is the
weekly holding cost for each item (cost of space, utilities,
security, and so on). To which of the variables K, M, and / is Q
most sensitive near the point (Ko, My, hg) = (2, 20, 0.05)? Give
reasons for your answer.
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Exercises 14.7

gives the critical points (0, 0), (0, 54), (54, 0), and (18, 18). The volume is zero at (0, 0),
(0, 54), (54, 0), which are not maximum values. At the point (18, 18), we apply the Second
Derivative Test (Theorem 11):

Vi = —4z, Vo= -4y, V. =108 — 4y — 4z.
Then
Vi Ve = V.2 = 16yz — 16(27 — y — 2)%.
Thus,
V,(18,18) = —4(18) < 0
and
[V Ve = V.2 50 = 16(18)(18) = 16(=9)> > 0

imply that (18, 18) gives a maximum volume. The dimensions of the package are
x = 108 — 2(18) — 2(18) = 36in.,y = 18 in., and z = 18 in. The maximum volume is
V= (36)(18)(18) = 11,664 in’, or 6.75 ft’. ]

Despite the power of Theorem 11, we urge you to remember its limitations. It does not
apply to boundary points of a function’s domain, where it is possible for a function to have
extreme values along with nonzero derivatives. Also, it does not apply to points where
either f, or f, fails to exist.

Summary of Max-Min Tests

The extreme values of f(x, y) can occur only at

i) boundary peints of the domain of f

ii) critical points (interior points where f, = f, = 0 or points where f, or f,
fails to exist).

If the first- and second-order partial derivatives of f are continuous throughout a
disk centered at a point (a, b) and f(a, b) = f,(a,b) = 0, the nature of f(a, b)
can be tested with the Second Derivative Test:

i) fo <Oand fif, — fo’ > 0at(a,b) = local maximum

ii) fo > 0and fuf,y — fu° > Oat(a,b) = local minimum
iii) fofy — fo’ < Oat(a,b) = saddle point

iV) fufy — fof = 0at(a,b) = testis inconclusive

Finding Local Extrema

Find all the local maxima, local minima, and saddle points of the

functions in Exercises 1-30.
V1 fx,y)=x*+xp+y>+3x -3y +4

2. flx,y) =2xy —5x2 = 2p% + 4x + 4y — 4

(
V3 fooy) =x*+xy+3x+20+5
4. f(x,y) =5xy — Ix> +3x — 6y + 2

5 f(x,y) =2xy — x> =22+ 3x + 4
6. flx,y) = x> —dxy + y> + 6y + 2
V7 fley) = 2x7 + 3xp + 4p? — 5x + 2y
8. fx,y) =x>—2xy+ 2> = 2x + 2y + 1
Vv 9 flr,y)=x*=y2—=2x+ 4y + 6
10. f(x,y) = x> + 2xy



11.
12.
v 13
14.
15.
16.
v 17
18.
19.
20.

21.

v 23.
25.

27.

v/ 29.
30.

flx,y) = \/56x2—8y2—16x—31+1—8x
fxy)—l—\/3 2+v2

~

xy) =x =y —2xy+6

(

(

(
flx,y) =x3+ 30y + 3
flx,y) = 6x2 — 2x3 + 3y? +6Ay
flx,y) = x> + 33 + 3x2 = 3% —
flx,y) = x> + 39 — 15x + 3 — 15y
floy) =263 + 293 — 9x2 + 32 — 12y
f(xy)—4xy—x -y
flx,y) = x* + y* + 4y
fla,y) = M%—l 22, f(x.y) =+ +xy + %
f(x,y) = ysinx 24. f(x,y) = e*cosy
flr,y) = e H 26. f(x,y) = & — ye
flx,y) = e + »?) 28. f(x,y) = ' (x* — »?)
fx,y) =2Inx + Iny —4x — y
foey) = +y) +x* -y

Finding Absolute Extrema

In

Exercises 31-38, find the absolute maxima and minima of the func-

tions on the given domains.

31.

32.

33

34.
Vv 3s.
36.

37.

38.

fx,y) =2x> —4x + y> — 4y + 1 on the closed triangular
plate bounded by the lines x = 0, y = 2, y = 2x in the first
quadrant

D(x,y) = x2 — xy + y* + 1 on the closed triangular plate in the
first quadrant bounded by the lines x = 0,y = 4,y = x

- flxy)

linesx = 0,y =

= x2 + »? on the closed triangular plate bounded by the
0,y + 2x = 2 in the first quadrant

T(x,y) = x> +xy +y>—6x on the

0=x=5-3=y=3

rectangular  plate

T(x,y) = x>+ xy + y> — 6x + 2 on the rectangular plate
0=x=5-3=y=0
f(x,y) = 48xy — 32x* — 24y> on the rectangular plate

0=x=10=y=1

f(x,y) = (4x — x?)cosy on the rectangular plate 1 = x < 3,
—m/4 = y = /4 (see accompanying figure).

z=(4x — x2) cos y

OQQ

s \

/

4 71,7 ’1;’;1' 0'.0 \\\\

7 " QQQ‘ \\\\\\\\\

0,0‘6 \\\\ \\N

f(x,y) = 4x — 8xy + 2y + 1 on the triangular plate bounded by
the lines x = 0,y = 0,x + y = 1 in the first quadrant

\/39.

40.

v 41.

42.

14.7 Extreme Values and Saddle Points 827

Find two numbers a and b with a = b such that

b
/(6—x—x2)dx

has its largest value.

Find two numbers a and b with @ = b such that
b
/ (24 — 2x — x*)dx
a

has its largest value.

Temperatures A flat circular plate has the shape of the region
x2+y2=1. The plate, including the boundary where
x% + y2 = 1, is heated so that the temperature at the point (x, y) is

Tx,y) = 2 + 2% -

Find the temperatures at the hottest and coldest points on the
plate.

Find the critical point of
fx,y) =xy + 2x — Inx?

in the open first quadrant (x > 0, > 0) and show that f takes
on a minimum there.

Theory and Examples

43.

44.

45.

46.

47.

48.

49.

Find the maxima, minima, and saddle points of f(x, y), if any,
given that

a. fy=2x—4y and f, =2y — 4x

b. fy=2x—2 and f,=2y—4

. r=9%2—-9 and f,=2v+4

Describe your reasoning in each case.

The discriminant f, f,, — fxy2 is zero at the origin for each of the
following functions, so the Second Derivative Test fails there. De-
termine whether the function has a maximum, a minimum, or nei-

ther at the origin by imagining what the surface z = f(x, y) looks
like. Describe your reasoning in each case.

a. f(x,y) = x%? b. f(x,y) =1 = x%?

e flx,y) =x? d. f(x,y) = x3y2

e flx,y) = x%’ £ flxny) = xh?

Show that (0, 0) is a critical point of f(x, y) = x> + kxy + y* no

matter what value the constant £ has. (Hint: Consider two cases:
k=0andk # 0.)

For what values of the constant k£ does the Second Derivative Test
guarantee that f(x,y) = x* + kxy + y? will have a saddle point
at (0, 0)? A local minimum at (0, 0)? For what values of k is the
Second Derivative Test inconclusive? Give reasons for your
answers.

If f(a, b) = f,(a,b) = 0, must f have a local maximum or min-
imum value at (a, b)? Give reasons for your answer.

Can you conclude anything about f(a, b) if f and its first and sec-
ond partial derivatives are continuous throughout a disk centered
at the critical point (a, b) and fy(a, b) and f,,(a, b) differ in sign?
Give reasons for your answer.

Among all the points on the graph of z = 10 — x? — y? that lie

above the plane x + 2y + 3z = 0, find the point farthest from
the plane.
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50

v 51

52

v 53

54.

56.

57.

58.

59.

60.

Extreme Values on Parametrized Curves

55.

Chapter 14: Partial Derivatives

. Find the point on the graph of z = x> + y + 10 ncarest the
planex + 2y — z = 0.

. Find the point on the plane 3x + 2y + z = 6 that is nearest the
origin.

. Find the minimum distance from the point (2, —1, 1) to the plane
x+ty—z=2

. Find three numbers whose sum is 9 and whose sum of squares is a
minimum.

Find three positive numbers whose sum is 3 and whose product is
a maximum.

Find the maximum value of
x+y+z=6.

Find the minimum distance from the cone z = Vx? + y? to the
point (=6, 4, 0).

Find the dimensions of the rectangular box of maximum volume
that can be inscribed inside the sphere x> + y2 + z2 = 4.

s =xy + yz+ xz where

Among all closed rectangular boxes of volume 27 cm?, what is
the smallest surface arca?

You are to construct an open rectangular box from 12 ft? of mate-
rial. What dimensions will result in a box of maximum volume?

Consider the function f(x,y) =x>+ >+ 2xy —x—y + 1
overthesquare 0 = x = land0 =y = L.

a. Show that f has an absolute minimum along the line segment
2x + 2y = 1 in this square. What is the absolute minimum
value?

b. Find the absolute maximum value of f over the square.

To find the extreme val-

ues of a function f(x, y) on a curve x = x(¢),y = y(t), we treat f as a
function of the single variable # and use the Chain Rule to find where
df/dt is zero. As in any other single-variable case, the extreme values

of
a

b.

f are then found among the values at the
. critical points (points where df/dt is zero or fails to exist), and

endpoints of the parameter domain.

Find the absolute maximum and minimum values of the following
functions on the given curves.

61

62.

. Functions:
a. f(x,y)=x+y
c. h(x,y) = 2x* + y?

Curves:

b. g(x,y) = xp

i) The semicircle x> + y> =4, y =0

i) The quarter circle x> + y> =4, x=0, y=0
Use the parametric equations x = 2cost,y = 2sint.
Functions:

a. f(x,y) =2x + 3y
e h(x,y) = x>+ 3?2
Curves:

i) The semiellipse (x2/9) + (y%/4) =1, y =0

ii) The quarter ellipse (x%/9) + (y*/4) =1, x =0,
Use the parametric equations x = 3 cost,y = 2sint.

b. g(x,y) = xy

63.

64.

65.

Function: f(x,y) = xy
Curves:
i) The line x = 21,

ii) The line segment x = 2¢,

y=t+1
yv=t+1,
iii) The line segmentx = 27, y =1t + 1,
Functions:

a. f(x,y) = x>+ y?

b. g(x,y) = 1/(x* + )7

Curves:
i)Thelinex =1, y=2—2¢

ii) The line segmentx = ¢, y=2—-2t, 0=¢r=1

Least squares and regression lines When we try to fit a line
y=mx+b to a set of numerical data points (xi, ),
(x2,2), - -+, (xn, vn) (Figure 14.48), we usually choose the line
that minimizes the sum of the squares of the vertical distances
from the points to the line. In theory, this means finding the val-
ues of m and b that minimize the value of the function

w=(mx;+b—y)+ - + (mx, +b— ). (1)
Show that the values of m and b that do this are
(S0 )(Zn) - rSun
m = 3 s (2)
(Exk> - nExkz

b= % (Eyk - m}‘,xk), (3)

with all sums running from & = 1 to & = n . Many scientific cal-
culators have these formulas built in, enabling you to find m and b
with only a few keystrokes after you have entered the data.

The line y = mx + b determined by these values of m and b
is called the least squares line, regression line, or trend line for
the data under study. Finding a least squares line lets you
1. summarize data with a simple expression,

2. predict values of y for other, experimentally untried values of x,

3. handle data analytically.

Pn(xn’ yﬂ)

P](xl’yl) y=mx+b

Py(x3. y2)

FIGURE 14.48 To fit a line to
noncollinear points, we choose the line that
minimizes the sum of the squares of the
deviations.
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If x = y, then Equations (3) and (4) give

x4+ xr—1

2x?

X

=0 x+x+z—-—1=0
=1 z=1—2x

The corresponding points on the ellipse are

n= (2

2 i

2 >

\6) and P, = (—\/2 _V2

2 27

1+\@>.

Here we need to be careful, however. Although P; and P, both give local maxima of f on
the ellipse, P, is farther from the origin than P;.

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0). The point on
the ellipse farthest from the origin is Ps. [

Exercises 14.8

Two Independent Variables with One Constraint

\/1.

2.

Vv 3.

VAL

10.

11.

12.

Extrema on an ellipse Find the points on the ellipse
x% 4+ 2y% = 1 where f(x, y) = xy has its extreme values.
Extrema on a circle Find the extreme values of f(x,y) = xy
subject to the constraint g(x, y) = x* + y> — 10 = 0.
Maximum on a line Find the maximum value of f(x,y) =
49 — x* — y2 on the line x + 3y = 10.

. Extrema on aline Find the local extreme values of f(x, y) = x2y

on the linex + y = 3.

Constrained minimum Find the points on the curve xy? = 54
nearest the origin.

. Constrained minimum Find the points on the curve x%y = 2

nearest the origin.

. Use the method of Lagrange multipliers to find

a. Minimum on a hyperbola The minimum value of x + y,
subject to the constraints xy = 16,x > 0,y > 0

b. Maximum on a line The maximum value of xy, subject to
the constraint x + y = 16.

Comment on the geometry of each solution.

. Extrema on a curve Find the points on the curve x> + xy +

»? =1 in the xy-plane that are nearest to and farthest from the
origin.

. Minimum surface area with fixed volume Find the dimen-

sions of the closed right circular cylindrical can of smallest sur-

face area whose volume is 167 cm?.

Cylinder in a sphere Find the radius and height of the open
right circular cylinder of largest surface area that can be inscribed
in a sphere of radius a. What is the largest surface area?

Rectangle of greatest area in an ellipse Usc the mecthod
of Lagrange multipliers to find the dimensions of the rectangle
of greatest area that can be inscribed in the ellipse
x%/16 + y2/9 = 1 with sides parallel to the coordinate axes.

Rectangle of longest perimeter in an ellipse Find the dimen-
sions of the rectangle of largest perimeter that can be inscribed in

14.

15.

16.

. Extrema on a circle

the ellipse x%/a® + y?/b* = 1 with sides parallel to the coordi-
nate axes. What is the largest perimeter?

Find the maximum and minimum values
of x> + y? subject to the constraint x> — 2x + y% — 4y = 0.

Extrema on a circle Find the maximum and minimum values
of 3x — y + 6 subject to the constraint x> + y? = 4.

Ant on a metal plate The temperature at a point (x, y) on a
metal plate is T(x,y) = 4x> — 4xy + y% An ant on the plate
walks around the circle of radius 5 centered at the origin. What
are the highest and lowest temperatures encountered by the ant?

Cheapest storage tank Your firm has been asked to design a
storage tank for liquid petroleum gas. The customer’s specifica-
tions call for a cylindrical tank with hemispherical ends, and the
tank is to hold 8000 m? of gas. The customer also wants to use the
smallest amount of material possible in building the tank. What
radius and height do you recommend for the cylindrical portion
of the tank?

Three Independent Variables with One Constraint

17.
18.

vV 19.
20.

v 2L
22.

23.

Minimum distance to a point Find the point on the plane
x + 2y + 3z = 13 closest to the point (1, 1, 1).

Maximum distance to a point Find the point on the sphere
x% + y? + z2 = 4 farthest from the point (1, —1, 1).

Minimum distance to the origin Find the minimum distance
from the surface x> — y? — z2 = 1 to the origin.

Minimum distance to the origin Find the point on the surface
z = xy + 1 nearest the origin.

Minimum distance to the origin Find the points on the surface
22 = xy + 4 closest to the origin.

Minimum distance to the origin Find the point(s) on the sur-
face xyz = 1 closest to the origin.

Extrema on a sphere Find the maximum and minimum values of
f,y,z) =x—2y + 5z
on the sphere x> + y? + z2 = 30.
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v 25
26

27

28

29

30.

31.

32.

. Extrema on a sphere Find the points on the sphere
x2 4+ y2 + 22 =25 where f(x,y,z) =x + 2y + 3z has its
maximum and minimum values.

. Minimizing a sum of squares Find three real numbers whose
sum is 9 and the sum of whose squares is as small as possible.

. Maximizing a product Find the largest product the positive
numbers x, y, and z can have if x + y + z% = 16.

. Rectangular box of largest volume in a sphere Find the di-
mensions of the closed rectangular box with maximum volume
that can be inscribed in the unit sphere.

. Box with vertex on a plane Find the volume of the largest closed
rectangular box in the first octant having three faces in the coordi-
nate planes and a vertex on the plane x/a + y/b + z/c = 1, where
a>0,b>0andc > 0.

. Hottest point on a space probe A space probe in the shape of
the ellipsoid

4x* + y? + 422 = 16

enters Earth’s atmosphere and its surface begins to heat. After 1
hour, the temperature at the point (x, y, z) on the probe’s surface is

T(x,y,z) = 8x* + 4yz — 16z + 600.
Find the hottest point on the probe’s surface.

Extreme temperatures on a sphere Suppose that the Celsius
temperature at the point (x, y, z) on the sphere x? + y2 + z% = 1
is 7 = 400xyz>. Locate the highest and lowest temperatures on
the sphere.

Maximizing a utility function: an example from economics
In economics, the usefulness or wutility of amounts x and y of two
capital goods G, and G, is sometimes measured by a function
U(x, y). For example, G| and G, might be two chemicals a phar-
maceutical company needs to have on hand and U(x, y) the gain
from manufacturing a product whose synthesis requires different
amounts of the chemicals depending on the process used. If G,
costs a dollars per kilogram, G, costs b dollars per kilogram, and
the total amount allocated for the purchase of GG and G, together
is ¢ dollars, then the company’s managers want to maximize
U(x, y) given that ax + by = c. Thus, they need to solve a typi-
cal Lagrange multiplier problem.
Suppose that

Ulx,y) = xp + 2x
and that the equation ax + by = ¢ simplifies to
2x + y = 30.

Find the maximum value of U and the corresponding values of x
and y subject to this latter constraint.

Locating a radio telescope You are in charge of erecting a ra-
dio telescope on a newly discovered planet. To minimize interfer-
ence, you want to place it where the magnetic field of the planet is
weakest. The planet is spherical, with a radius of 6 units. Based
on a coordinate system whose origin is at the center of the planet,
the strength of the magnetic field is given by Mi(x,y,z) =
6x — y> + xz + 60. Where should you locate the radio tele-
scope?

Extreme Values Subject to Two Constraints

33

. Maximize the function f(x,y,z) = x* + 2y — z? subject to the
constraints 2x — y = 0and y + z = 0.

34.

35.

36.

37.

38.

39.

40.

14.8 Lagrange Multipliers 837

Minimize the function f(x, y,z) = x> + y% + 22 subject to the
constraints x + 2y + 3z = 6andx + 3y + 9z = 9.

Minimum distance to the origin Find the point closest to the
origin on the line of intersection of the planes y + 2z = 12 and
x+y=6.

Maximum value on line of intersection Find the maximum
value that f(x, y,z) = x> + 2y — z% can have on the line of in-
tersection of the planes 2x — y = 0and y + z = 0.

Extrema on a curve of intersection Find the extreme values of
f(x,y,z) = x*z + 1 on the intersection of the plane z = 1 with
the sphere x> + y2 + z2 = 10.

a. Maximum on line of intersection Find the maximum value
of w = xyz on the line of intersection of the two planes
x+y+z=40andx +y —z=0.

b. Give a geometric argument to support your claim that you
have found a maximum, and not a minimum, value of w.

Extrema on a circle of intersection Find the extreme values of
the function f(x, v, z) = xy + z’ on the circle in which the plane
y — x = 0 intersects the sphere x> + y? + 22 = 4.

Minimum distance to the origin Find the point closest to the

origin on the curve of intersection of the plane 2y + 4z = 5 and
the cone z2 = 4x? + 42

Theory and Examples

41.

42.

43.

44.

The condition Vf = AVg is not sufficient Although Vf = AVg
is a necessary condition for the occurrence of an extreme value of
f(x, y) subject to the conditions g(x, y) = 0 and Vg # 0, it does
not in itself guarantee that one exists. As a case in point, try using
the method of Lagrange multipliers to find a maximum value of
f(x,y) = x + y subject to the constraint that xy = 16. The
method will identify the two points (4, 4) and (—4, —4) as candi-
dates for the location of extreme values. Yet the sum (x + y) has
no maximum value on the hyperbola xy = 16. The farther you go
from the origin on this hyperbola in the first quadrant, the larger
the sum f(x,y) = x + y becomes.

A least squares plane The plane z = Ax + By + C is to be
“fitted” to the following points (xx, yi, z):

(0?07 0)’ (07 ]‘ﬂ 1)9 (17 19 1)?

Find the values of 4, B, and C that minimize

(1,0, —1).

4
E(Axk + By, + C — Zk)z,

k=1
the sum of the squares of the deviations.

a. Maximum on a sphere Show that the maximum value of
a®b%c? on a sphere of radius » centered at the origin of a
Cartesian abc-coordinate system is (rz/ 3)3

b. Geometric and arithmetic means Using part (a), show
that for nonnegative numbers «, b, and c,

(abe)3 = 4t b Fc.

3 b
that is, the geometric mean of three nonnegative numbers is
less than or equal to their arithmetic mean.

Sum of products Letay, az, ..., a, be n positive numbers. Find
the maximum of 37 a;x; subject to the constraint =% x;2 = 1.
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COMPUTER EXPLORATIONS 46. Minimize  f(x,y,z) = xyz subject to the constraints
In Exercises 4550, use a CAS to perform the following steps imple- ¥+ y2—1=0andx —z = 0.
menting the method of Lagrange multipliers for finding constrained 47. Maximize f(x,p,z) = x> + y> + z* subject to the constraints
extrema: 2y 4+ 4z — 5 =0and 4x> + 4y* — 22 = 0.
a. Form the function 4 = f — A1g1 — A2ga, where f is the func- 48. Minimize f(x,y,z) = x> + y? + z? subject to the constraints
tion to optimize subject to the constraints gy = 0 and g, = 0. 2 — xy +.y2 —22_1=0and? + yz —1=o0
b. Determine all the first partial derivatives of 4, including the par- 49. Minimize f(x, v,z w) = x> + y> + z% +w? subject to the
tials with respect to A} and A;, and set them equal to 0. constraints 2x—y+z—w—1=0 and x+y—z+
¢. Solve the system of equations found in part (b) for all the w—1=0.

unknowns, including A, and A;.

=9

exercise.

45. Minimize f(x,y,z) = xy + yz

. Evaluate f at each of the solution points found in part (c) and se-
lect the extreme value subject to the constraints asked for in the

subject to
¥+ y2—2=0andx*+z2—-2=0.

50. Determine the distance from the line y = x + 1 to the parabola
% = x. (Hint: Let (x, y) be a point on the line and (w, z) a point
on the parabola. You want to minimize (x — w)? + (y — 2)%)

the constraints

14.9 | Taylor's Formula for Two Variables
7

S(a+ h,b + k)

Parametrized
segment
i \ @+ th b+ ),
a typical point
on the segment

Part of open region R

FIGURE 14.57 We begin the derivation
of the Second Derivative Test at P(a, b) by
parametrizing a typical line segment from
P to a point S nearby.

In this section we use Taylor’s formula to derive the Second Derivative Test for local ex-
treme values (Section 14.7) and the error formula for linearizations of functions of two in-
dependent variables (Section 14.6). The use of Taylor’s formula in these derivations leads
to an extension of the formula that provides polynomial approximations of all orders for
functions of two independent variables.

Derivation of the Second Derivative Test

Let f(x, y) have continuous partial derivatives in an open region R containing a point P(a, b)
where f, = f, = 0 (Figure 14.57). Let /& and k be increments small enough to put the
point S(a + &, b + k) and the line segment joining it to P inside R. We parametrize the
segment PS as

x=a + th, y =b + tk, 0=r=1.

If F(¢t) = f(a + th, b + tk), the Chain Rule gives
P S
F(t) _fxdl‘ +fydl‘ _hfx+kfy'

Since fy and f, are differentiable (they have continuous partial derivatives), F" is a
differentiable function of ¢ and

y _OF dx  OF 4y _ 9 P _
P = iy an = an e T kR b G+ k) -k

= hfo + 2hkf,, + K*f,,.

f\\' - fv X

Since F and F' are continuous on [0, 1] and F’ is differentiable on (0, 1), we can apply
Taylor’s formula with n = 2 and ¢ = 0 to obtain

— 2
F1) = F0) + PO~ 0) + Fo) 52

X M
F(1) = F(0) + F'(0) + EF”(C)
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Exercises 14.9

1

Finding Quadratic and Cubic Approximations 9. f(x,y) = 1 R ——
—x—y+ux

In Exercises 1-10, use Taylor’s formula for f(x, y) at the origin to find I—x—-y
quadratic and cubic approximations of f near the origin.

10. f(x,y) =

11. Use Taylor’s formula to find a quadratic approximation of
v 1. f(x,y) = xe’ 2. f(x,y) = e*cosy f(x,y) = cosxcosy at the origin. Estimate the error in the ap-
proximation if |x| = 0.1 and|y| = 0.L

3. f(x,y) = ysinx 4. f(x,y) = sinxcosy
= o' In (1 — . 12. Use Taylor’s formula to find a quadratic approximation of e” sin y
V5 fley) = etin(l +y) 6. flx,y) =In(2x+y+1) at the origin. Estimate the error in the approximation if |x| = 0.1
v 7T foy) =sin(x® + 57 8. f(x,y) = cos (x> + »?) and|y| = 0.1.

1 4 1O| Partial Derivatives with Constrained Variables
- LV

In finding partial derivatives of functions like w = f(x, y), we have assumed x and y to be
independent. In many applications, however, this is not the case. For example, the internal
energy U of a gas may be expressed as a function U = f(P, V, T) of pressure P, volume V,
and temperature T. If the individual molecules of the gas do not interact, however, P, V,
and T obey (and are constrained by) the ideal gas law

PV = nRT (n and R constant),

and fail to be independent. In this section we learn how to find partial derivatives in situa-
tions like this, which occur in economics, engineering, and physics.*

Decide Which Variables Are Dependent
and Which Are Independent

If the variables in a function w = f(x, y, z) are constrained by a relation like the one im-
posed on x, y, and z by the equation z = x> + y? the geometric meanings and the numeri-
cal values of the partial derivatives of f will depend on which variables are chosen to be
dependent and which are chosen to be independent. To see how this choice can affect the
outcome, we consider the calculation of 9w/dx when w = x? + y? + zZand z = x? + y2

EXAMPLE 1 Find ow/ox ifw = x> + y? + z2and z = x* + 2

Solution We are given two equations in the four unknowns x, y, z, and w. Like many
such systems, this one can be solved for two of the unknowns (the dependent variables) in
terms of the others (the independent variables). In being asked for dw/dx, we are told that
w is to be a dependent variable and x an independent variable. The possible choices for the
other variables come down to

Dependent Independent
w, z X,y
w,y X,z
In either case, we can express w explicitly in terms of the selected independent variables.

We do this by using the second equation z = x? + y? to eliminate the remaining depend-
ent variable in the first equation.

*This section is based on notes written for MIT by Arthur P. Mattuck.





